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Classical specific heat of an atomic lattice at low temperature, revisited
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We present results of a standdodnstant energymolecular dynamics simulation of a Lennard-Jones lattice

at low temperature. The kinetic energy fluctuations exhibit an anomalous behavior, due to a dynamics which is
only weakly chaotic. Such a dynamics does not allow the use of the usual microcanonical equilibrium formula
to compute the specific heat. We devise a different method for computing the specific heat, which exploits just
the weak chaos at low temperature. The result is that at low temperature this “revisited” specific heat is lower
than the classical value, and approaches zero when the temperature goes to zero. Only for exceedingly long
trajectories does the specific heat approach the classical value, with the exception of the very low temperature
range. These results prompt a reconsideration, in the frame of modern nonlinear dynamics, of early intuitions
by Nernst and JeangS1063-651X98)00101-9

PACS numbds): 05.20.Gg, 63.706:h, 65.40:+g

I. INTRODUCTION the results computed through time averages. As a matter of
fact, in most cases their duration is orders of magnitude
The failure of classical statistical mechanics in predictingshorter than that of a real experiment performed at equilib-
the drop to zero of the specific heat of an atomic latticelUM- o o
when the temperature goes to zero, is well known. It was one_ A relevant example of this kind of system is given by
of the major issues, together with the blackbody radiation@tomic lattices at low temperature, which do not exhibit

which boosted the epochal change in physics from the cla€duipartition of energy among normal modes up to very long
sical to the quantum paradigm. At that time, several attemptimes [4]. In these systems anomalous fluctuations of the
were made by renowned physicists to reconcile the well de!_(lne'qc energy indicate the_lt_ the rel_axat|on toward equmb_num
signed classical scheme with the new experimental gigta 'S Nindered. More specifically, it has been found, in a
those attempts were eventually given up. In more recenltennard-Jo_nes fcc Iatt|cg at a temperature of few degree§ K,
years the problem of the energy distribution in a radiant caythat the variance of th_e klnetlc_energy relaxes to the classical
ity was resumed by Benettin and Galgani by means of £xpected value over times which are at least three orders of
computer experimer{2]. Their results showed that modern Magnitude larger than the time needed by the kinetic energy
developments in classical nonlinear dynamics establish 4Se!f[5]- This may be related to the fact that the total kinetic
bridge between the classical and the quantum descriptions. f{1€79Y is @ summable function, while its fluctuation is not.
this paper, we show that a similar framework can substantionly for summable functions is ergodicity granted if the sur-
ate, at least qualitatively, some of the attempts mentionefC€ Of constant energy is metrically indecomposable in the
above, providing a hint on how to narrow the gap betweerfXxtended sense, which is assumgd to b_e a generic property of
the predictions of classical and quantum statistical mechanidf'® Mechanical systems treated in statistical mechdics
for the low temperature specific heat. The example just cited shows that quantities depending on
In computer experiments performed by molecular dynam©n€ and the’same set of microscopic varialtieshat case,
ics (MD), ensemble averages are replaced by time average'€ Particles’ momenjamay refax to their asymptotic value
A practical problem which arises is how long the trajectory©Ver largely different times. This implies that the system
must be in order to ensure an equivalence between the twgay appear to be at equilibrium or out of equilibrium, de-
kinds of average. Experience has shown that—despite thR€nding on which quantity is observed in a computer experi-
fact that practically no realistic condensed matter system ha®€nt of standard length. In Ref5] it was shown that, be-
ever been demonstrated to be ergodic—in many cases a tra24S€ of the exceedingly long time needed by the variance of
jectory of some thousands of time steps is sufficient to extn€ kinetic energy to reach its equilibrium value, the compu-
plore the phase space with a good accuracy. There are, hojtion of the specific heat at constant volume, when per-
ever, systems for which this equivalence is not reached evefermed through a formula suitable for the microcanonical
for very long simulation times, which greatly exceed theensemb[e, yields ab_SUfF’ .results. In this paper we present a
usual length of a computer experiment. Even if one gives up'@ 1o circumvent this difficulty. Our method to compute the
the requirement of ergodicity and contents oneself with thePecific heat is based exactly on the phenomenon which hin-
view that * . . . thetime averages of phase funatio. . ap- ders the use _of the equilibrium microcanonical for_mula: the
pear as a natural interpretation of experimental measuréV€2K interaction among normal modes of the lattice at low

ments” [3], one is left with the problem of the reliability of €Mmperature.
Il. MODEL
* Author to whom correspondence should be addressed. Electronic We have simulated the dynamics of a two-dimensional
address: tenenbaum@romal.infn.it system composed df? particles of masM (L=8), ar-
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ranged on a square lattice with square cells of sidsur- kg /2
rounded by a border of fixed particles. Each particle interacts c,= > , (D)
with the four first neighbors through a Lennard-Jones poten- ~ Nd (K me= (K)me
tial 2 <K>§1c
o\12 [\ whereN is the number of particles] the dimensionality of
V(r)=4e (?) —<?> ; the system, ani its total kinetic energy{ ) is a micro-
canonical ensemble avera@0]. As usual in MD experi-
ments, one defines a temperatiliréhrough the time average
V(r) has its minimum at o= 2"%. of the kinetic energy:
In the following, in order to make an approximate com-
parison with reality, the Lennard-Jones parameters will be (K)=NdkgT/2, (2

given the values appropriate for argom=3.405 A, e
=119.%g (kg is Boltzmann’s constajitthe corresponding
reduced time unit is= (mo?/48:)1?=3.112x10 *s. Our
model is obviously not similar to real argon, which crystal )
lizes in a fcc structure. On the other hand, it has the advar{-ll]'
tage that its dynamical behavior has already been studied in 5
detail [4,7]. It exhibits a breakdown of ergodicity at low cU=H[§<K)mC<K‘1>mC+ N(1—(K)md K D17t
temperature; as a consequence of this breakdown, energy 3)
equipartition among normal modes does not hold at low tem-
perature. This fact makes this system a good candidate to We used formulagl) and(3) to compute the specific heat
study the possible influence of a weakly chaotic dynamics ofper DOF of our system at various temperatures, replacing
a thermodynamical quantity like the specific heat, which deensemble averages by time averages. This computation
pends on the energy exchange among degrees of freedomturned out to be a check of the equivalence of time and
The system has been simulated at various temperaturg;semble averages, and showed that this equivalence does
below 17 K. The equations of motion have been integrateghot hold for computer experiments performed at low tem-
with a central difference algorithm, frequently used in MD perature(with phase space trajectories of standard length
experiment$8]. We have improved the precision of the stan-  |n order to illustrate this fact, in Fig. 1 we show the result
dard algorithm for the velocities by one order in the timeof a simulation performed a&k=0.106 K. The value given
step; a description of this modified algorithm was given inby (1) for c, at the beginning of the run is about
Ref. [9]. —0.14g, while the classical value ofg is reached only
We have used a time stép=0.032r=10""*s; each run  after a very long average: about’lfime steps(correspond-
had a first equilibration stage of 1Gteps, followed by a ing to 0.1us) are needed to reach the expected plateau
stage of up to 10steps, during which equilibrium averages within an approximation of 1%curvea). Between these two
were computed. We have explored the energy range beloyimits there is a peculiar divergence, due to the denominator
e=0.14, wheree is the energy per particle. For argon, this of formula (1) going to zero. This in its turn, as already
would correspond to temperatures in the range below 17 Kexplained in Ref[5], is related to an anomalous fluctuation
which includes the transition region determined in Refsof the kinetic energy((sK)2)=(K?)—(K)2. Formula (1)
[4,7] for our 64-particle system. The total energy was ini-shows that the specific heat diverges around a tifhet
t|a”y distributed at random among all particles; therefore, |twh|ch the average f|uctuation Of the kinetic energy equa's
was distributed at random among all normal modes. Thes§<K>2/Nd_ Such a fluctuation would be expected in a ca-

initial conditions are surely the most generic at high temperangnical ensemble, while the value expected in a microca-
ture, where the whole system is chaotic. At low temperaturenonical ensemble i¥K)2/Nd [10]. The very long time
where the dynamics exhibits ordered features, the initial conpeeded by, to reach the valukg is evidence of the exceed-
ditions could influence the final result. We have checked thahg|y slow relaxation of the variance of the kinetic energy,
letting the system relax from the initial condition during an mentioned above. A similar pattern is found when one uses
equilibration time of 16 time stepginstead of the usual £0 formula (3). In this case, the time needed to reach the
time stepg the results were not altered in any significant asymptotic value o€, is even longelcurveb).
way. In Fig. 2, we report the variation df with temperature.
Above 0.1 K,t* decreases exponentially with so that for
1. MICROCANONICAL SPECIEIC HEAT temperatures abevl K one can expect that the standgrd
simulation time—of the order of some thousands of time
The boundary conditions imposed on the simulated syssteps—is sufficient to find the expected classical value for
tem act as a conservative force field; it turns out that the totat, . On the other hand, when the temperature decreases be-
energy is almost constant within a relative variation of10 low 0.1 K, t* increases very sharply; as a consequence, at
Therefore, if the system were ergodic, its trajectory in thevery low temperature, time averages of the kinetic energy
phase space would sample a microcanonical ensemble. Ffiuctuations—even over very long times—are not equivalent
this ensemble the specific heat per degree of freed@®F) to ensemble averages. The temperature in the computer ex-
at constant volume is related to the average fluctuation of thperiment is defined in the usual way, through form(@2a
kinetic energy through the formula This identification deserves some specification. One may

where( ) is the time average. There is another formula for
the specific heat, which coincides with formuld in the
_thermodynamic limit, but should be more precise for fimte
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=2X10° and tf=6.3x10° time steps. T
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question the meaning of((ow) thermodynamic temperature, dered; this “smooth” integrability was sufficient to hamper
given the apparent lack of ergodicity. On the other hand, irthe chaotic behavior of the system, and produce unwanted,
our computer experiments equipartition between the total kilong-lasting undulations of the kinetic energy. Moreover, the
netic and the total potential energy holds quite strictly, hav/NoseHoover method requires a modification of the equa-
ing taken into account the small anharmonicity left at lowtions of motion in the bulk of the system. It can be expected
energy; therefore, the temperature may be defined as usuiyat this would alter substantially the behavior of the system

through the particles’ kinetic energy, which shows no “pa-N the low temperature region of the phase space, where the
thology” in this range. dynamics is known to be partially ordered.

In order to obtain a physically significant measure of the
specific heat at low temperature, we used a method based
IV. CANONICAL SPECIFIC HEAT just on the “pathological” dynamics which hinders the use
. N of formula (1). This anomalous behavior can be better rep-
In_(_)rder to have a physically significant measure of theresented if one adopts a set appropriate coordinates to
speuflq heat at low temperature, one can try to circUmvenfagqrine the dynamics of the system. For a lattice, this set are
the dnﬁﬂculty connected \.N'th formuldl) by §W|tch|ng 0 a the normal modeg$4], while the particle Cartesian coordi-
canonical ensemble. This could be ac_hewed using a Nos ates do not exhibit any appreciable anomaly in their dynam-
Hoover thermostat to sample a canonical ensemble. But ggs[13]. It has been shown that in the lattice here described
an0m8:|OUS fluctuation of the klnetIC. enefgy has recently beeequipartition Of energy among norma' modes does not ho'd
found in computer experiments using Neseover dynam-  at low temperaturd4]. This lack of “attrition” among
ics [12]. It turned out that the dynamics of the extendedmodes, characteristic of a weakly chaotic dynamical regime,
system(particles plus heat-flow variablevas partially or- is responsible for the slow relaxation of the kinetic energy

fluctuation, and determines the short- and medium-time mac-
! ' ' ' ' ' roscopic behavior of the system.
107 | ] We will show below that the normal modes of our system
can be divided into groups of equal frequency; within each
group the energy exchange among modes is significant and
rapid, while the exchange among different groups is usually
10° | 1 weak and slow. Exploiting this feature, each group of normal

[%2]
.j,? modes can be seen as a small subsystem in weak interaction
£ with a “thermal bath” made of all other groups of modes.
- The interaction takes place through the anharmonic part of
10% | . the Hamiltonian. While it is evident that the probability dis-
tribution of the energy of the whole system, or of a large
portion of it, is bound by the condition that the total energy
be constant, for small components of the system the energy
104 L L L L L L distribution law is “almost identical” in the microcanonical
0 0.1 02 0.3 04 05 0.6 and in the canonical enseml&4].
TK) In a canonical ensemble the probability of a state of en-
ergyE, is
FIG. 2. Divergence tim¢* of the microcanonical specific heat, e PEa.
computed through formulél), in the low temperature range. The P(E,)=——, (4)
curve shows the different behavior 6 in the temperature ranges E e PEa

below and above 0.1 K. r
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where the sum extends over all possible states gnd sufficiently low energieswy, and oy, are the angular fre-
=(kgT) 1. If the system can be decomposedNh small  quencies of the normal modes:
subsystems with negligible interaction, one hds,

=3>M E., whereE; is the energy of subsystejn(obviously 4 ah 7k
j=15j j X \2__ Yy \2_ H -
E,<E,). One has (0h)*= ()= Kisi® g+ Kisi 5=
M
2
—BE,— - BE; oV 10V
e ]l e =7z KEa
ar?| d

On the other hand, one also has
We have considered the case in which the lattice param-

" M etera=r,, which gives zero pressure at zero temperature. In

> e BE=> e*ﬁzj=1Ei=_H > e PEi; this caseK;=0. There are only distinct frequenciesd,

@ “« =1 @ = o}, =w;) ranging from 0.3789 to 2.1491 in Lennard-
Jones reduced unitsad/r). The normal modes are naturally

therefore, separated intd. groups, each group including-2modes of
Moo M equal frequency. The total energy of the system may now be
P(E,)= = P(Ej|Ea), found summing the energids;, of the different groups of
j=1 z o BE 171 modes, plus the energy of the coupling due to lteterm;
=~ one has

. o . . L
where P(Ej|Ea) is the conditional probability that thgth M %2 5 iy 5
subsystem has ener@ when the whole system has energy Eh:jgl [(dhi) *+ (@Rdh) “+ (An) “+ (0hdkn) 1.

E,. If the jth subsystem is small in comparison with the

whole system, then the value of total energy is not an effec- | this case, the eight group energigg will be the rel-

tive constraint for the energy of the subsystem; one thereforgyant DOF’s. In fact, as described in RéA], modes of

has P(E;|E,)=P(E)), using definition(4), with E; taking  equal frequency rapidly exchange their energy, always pro-
any value. This means that the canonical probability at temgiding a good energy equipartition inside their group. On the
peratureT of a state of the system is the product of the pther hand, the exchange of energy among groups of modes
independent probabilities of thé subsystems at the same of different frequency is strongly affected by the breakdown
temperature. It is as if each subsystem were individually inof ergodicity at low temperature. Therefore, the energies of
contact with the thermal bath which determines the temperate groups become the relevant DOF’s in monitoring the
ture of the system. dynamics of the system.

Adopting this canonical point of view, we have computed  For a system at constant temperature the specific heat per
the contribution of each group of modes to the heat capacitpoF is given, in units okg:

of the system through a formula suitable for a canonical en-
semble. The anharmonicity of the system has been taken into 1 (H?) —(H)Z
account by considering the nonlinear terms in the Hamil- = ¢ ¢
tonian as a part of the thermal bath; this contribution to the
energy of the system becomes negligible at low temperature. _

Let uX, anduy,, be the displacements of a particle from its WhereH is the total energy andl the temperature. Here too

equilibrium position at sitel(m) (I,m=1,8). The normal- We replace ensemble averages by time averages. Considering
mode coordinates are defined by the ith group ofLd normal modes as an independent sub-

system of energ¥; , its contribution to the specific heat per

.= Ng —kéTZ , )

L 2 EL: . (hal\ (kwm DOF will be, using formula5),
g, g, U e SN T ) L (M) (H)?
. 1 I
. ¢&()=14 e (6)
y _ 2 E o sin( harl )sin k7rm B
Q=77 | 1 T21/
L+1im=y AL+ L+1 and the specific heat for the total system will be
whereh,k=1,L. In these coordinates the Hamiltonian of the
system is > Ldc,(i)
1
C,=———. (7)

Mo . L2d
H= ?hkzzl [(an) *+ (0pi i) >+ (Al *+ (i) *]
’ Adopting this point of view, one may wonder whether the
+H’, temperature used in formul@) should refer to the whole
system or to the subsystem. In the latter casgroap tem-
whereH’ is the anharmonic part of the Hamiltonian, which perature T, could be computed—through formula)—from
entails the coupling among normal modes and is negligible ahe average kinetic energy of théa group of normal modes.
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Consequently, in formul@6) T should be replaced by;. 14— . . . . . . . .
We will show later that the two choices yield almost equiva- ol i
lent results. ’ i ) !
In order to make a comparison with quantum statistical 1 x 2
mechanics, we have computed also the quantum specific hei o © ©. Ox T :
of our lattice, in the frame given by the formula of Bornand %81 o .4, T y
von Karman: S N {N
08 1 oY A
fiwD(w) fiw oa b S L + -
= | gargr—qde+ | 5 D(w)dw, o 4k e
0.2 oﬁ’ L A a 2 E
whereU is the energy of the system abqw) is the density 0 of e , , , ,
of states. For our finite lattice, this formula becomes
g 16 T T T T T T T T Ta
L
hop z 12.r J
U=2Lh§=:lm+€0, é 8. . o= " 4
@ 4. - " T
. . g 'E 0 o n )" - 1 1 1 L 1 1
which gives for the specific heat per DOF, © " 0. 2. 4 6 8 10. 12. 14 16 18
2 T(K)
f“"h ghon/ksT
FIG. 3. The upper part shows the specific heat per DOF at

c —kBE

. 8 . . .
~ —(efiwh/kBT 1)2 (8) various averaging times, computed through form(éa @, 10°

time steps;x, 10* time steps®, 10’ time steps. Also shown is the
guantum specific heat) computed through formulg). The hori-
V. RESULTS OF THE COMPUTER EXPERIMENT zontal line represents the classical valte=kg. The lower part
shows the anharmonicity of the lattice, computedld$)/(H), in

We performed simulations in the temperature range belowhe same temperature range.
the melting point, which is around 17 K. Due to the instabil-
ity of the lattice, the higher temperatures were approachedith a constant slope when 12KT>2 K, and dropping
from below, first endowing the system with a low kinetic rapidly to zero below 2 K. The values of below 12 K are
energy and then—after equilibrium was reached—scaling ugloser to the quantum specific heat—computed through for-
the velocities; repeating this procedure several times, the fimula (8)—than to the classical Dulong-Petit law.
nal equilibrium temperature was reached, avoiding a melting Extending the equilibrium simulation over 10me steps,
of the lattice. The results of our simulations are reported irthe values ofc, increase, but the general pattern remains
Fig. 3. In the same figure we report the classical specific headimilar. If, on one hand, the classical valiag in now found
computed through formula@) and (7), and also the quan- around 13 K, the fast drop af, for T—0 is still present,
tum specific heat computed through formg@. notwithstanding the increase of the simulation time by one

Each point on the curve corresponding td fitne stepsis  order of magnitude.
the average of five different initial conditions; the error bars  We have further extended the simulation time up té 10
show the spread of the five results. The points on the curvéime steps. The curve a, is again shifted to higher values,
corresponding to 10time steps refer to a single initial con- but keeps the main new feature, that is, the drop to zero at
dition. Using in formula(6) the group temperatures instead low temperatures.
of the system temperature, one obtains slightly different val- The evolution in time of the curves in Fig. 3 suggests an
ues forc, , not shown in Fig. 3. For the two curves at shorterinterpretation based on different dynamical regimes. In the
times the results foc, differ in some cases by a few percent, range below 0.1 K the persistent low value @f could be
and only in one case—afteriﬂme steps—by 20%. For the ascribed to an ordered dynamics due to the presence of
points obtained after T0time steps, the new results almost Kolmogorov-Arnold-Moser(KAM) tori in the phase space
coincide with the others. As the use of these two differen{15]. Between 1 and 10 K the very slow increasecgfis
temperatures does not modify in any significant way the patreminiscent of a dynamica la Nekhoroshe\[16], with a
tern shown in Fig. 3, we have reported for clarity only the slow Arnold diffusion in the phase space. Above this range
data computed with the temperature of the system. the motion becomes chaotic over times which are not very

The main feature emerging from Fig. 3 is that at lowlong (1¢' steps, andc, has a value near to the classical one
temperature the specific heat does not have the constakyf. The various curves for, do not show a plateau at this
value predicted by the classical law of Dulong-Petit. Indeedyalue. This is due to the strong anharmonicity of the lattice,
a computation ot, performed over 1time stepgafter 16  which is measured by the rati¢4’)/(H). In the lower part
time steps of equilibratiorshows that the classical value for of Fig. 3 we report the value of the anharmonicity; the in-
c,, that is,kg for degree of freedom, is found at a tempera-crease for temperatures above 10 K is indicative of the soft-
ture around 16 K, while close to this poiet shows the ness of the lattice, which melts above 16 K, as shown by the
typical increase expected in a lattice when the melting poinsharp rise to 15% of the anharmonicity.
is approached from below. Below 15 K, the behaviorcpf An obvious question raised by these results is what would
clearly diverges from the classical prediction, diminishingone find for even longer simulations. The time dependence
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1 . . - . . the second range the behavior is mixed: some values, of
e are still slowly increasing, some are stable. Here again one is
induced to assign the first range to a region mainly foliated
by KAM tori, while the mixed behavior of the second range

n W seems ascribable to a dynama$a Nekhoroshev. The gen-

0.6 | v § eral pattern which emerges from this figure is that at very
low temperature the values found fey in our computer
experiment are almost asymptotic. For higher temperatures a

08 |-~ ¢ .

Cy

04 F .

i change ofc, for some temperatures can be expected over
/WM exceedingly long runs; however, this shift of values should
o2 b ] not qualitatively alter the curve, which would remain signifi-
cantly below the classical value for temperatures below 10
A o m K.
0 — — — — x The results given above show that the low energy region
0 2x10 4x10 6x10 8x10 10

of the phase space is characterized by a core where the dy-
namics is ordered; here the freezing of the energy exchange
FIG. 4. Specific heat per DOfn kg units) as a function of the among normal modes yields a value of the specific heat
averaging timec: T=2.63 K; f: T=5.27x10"* K; i: T=6.59  which is closer to the quantum value than to the classical
X102 K; m: T=1.34x1072 K. one. This should not be surprising, as the quantum behavior
at low temperature depends exactly on the fact that the en-
of the averaged value af, can be seen in Fig. 4, where the ergy exchange among DOF’s is heavily hampered. The
results up to 10time steps are given for four temperatures phase space region near the ordered core is characterized by
below 3 K. The figure shows clearly that in this temperaturea weak chaoticity, which manifests itself only over very long
range the asymptotic values of are smaller than the clas- times, as predicted by the Nekhoroshev theorem. As a con-
sical valuekg . A more detailed analysis of these features issequence, in the enerdtgemperaturerange corresponding to
given in Fig. 5, where we plot the functiorIn(1—c,) for  this region, the specific heat increases slowly towards its
the longest simulation (¥Otime stepy in the temperature classical value. But this can be observed only if the simula-
range below 7 K. The function shown should divergejf  tion time is increased by orders of magnitude over the typical
approached from below the classical vakie. Indeed, for duration of an equilibrium computer experiment.
short times the curves exhibit a very steep rise. But as time
increases the slope of all curves diminishes progressively,
indicating that the valué&g would be reached only in some VI. RETRIEVAL OF EARLY INTUITIONS
cases, and over extremely long simulation times. The figure

shows that some temperatures give aftef Z0stabilized proposed by Boltzmann in his work on the theory of gases. A

;/a}:ue tOIﬁv ' Wh”e some others do n(;)_t.t_LooIgr;gt mo:e care- rigorous attempt do develop a formal scheme supporting this
ully at thé various curves, one can distinguish two temperay,o; a5 made by Jeans in his mechanical model of ether.
ture ranges: below 0.12 K and above 0.12 K. In the firs

Z o tFollowing Jeans, a system is inn@rmal stateif the energy
range the values reached by are stable after 10steps; in distribution turns out to be independent of the initial condi-

tions: this is clearly a property of ergodic systems.

timesteps

The idea of a freezing of the degrees of freedom was first

5 ' ' ' ' ' The time needed to reach this state depends on the rate of
3l | energy exchanges, and Jeans improved in this context the
a original idea of Boltzmann. Jeans said that for some systems
o5 L b 4 the normal state is achieved after a long relaxation which can
. even be of the order of “hundred of centuriegds roughly
3 2f d- computed by him through heuristic consideratiofis7]. On
- the other hand, he admitted that the Planck distribution cor-
5 15r e rectly describes those states of equilibridire., independent
f of the initial condition$ which can be reached during the
r T time of a typical experiment. But, he argued, one cannot
g exclude that during a typical experiment some degrees of
05 h'1  freedom are still frozen, and that the distribution will even-
o _%. . , . —'m tually evolve over a very long time, of the order of magni-
0 2a10®  ax10°  ex10®  sxi0® 107 tude mentioned above.

Later, an equilibrium approach to this problem was at-
tempted by Nernst in 191BL8]. An important character of

FIG. 5. A function of the specific heat per DOF computed Planck’s quantum zero-point energy is that it is not available:
through formula(6), as a function of the averaging tima: T it is only the ground state, that is, a new zero for the energy
=6.56 K: b: T=3.94 K: ¢c: T=263 K; d: T=132 K. e T which can be exchanged. The zero-point energy is neither
=1.05 K; f: T=5.27x10""' K; g: T=1.30<x10°' K; h: T  ordered, nor disordered: it is fixed. Instead, the central idea
=1.20x10"! K; i: T=6.59x1072 K; I: T=1.45x10"2 K; m:  of Nernst is that the zero-point energy is always free in prin-
T=1.34x103 K. ciple and can be exchanged by continuous amafinis con-

timesteps
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cept was the basis for a new model of ejhdris not always In the first case the dynamics will be similar to that of a
used by the system; for example, in some cases it is natystem of hard spheres, in the second case to that of a system
exchanged during molecular collisions: it is “ordered.” of perturbed harmonic oscillators. Now, the system of hard
Nevertheless, whenever this zero-point energy is used, it ispheres is assumed to be ergddg], while the KAM theo-
transformed into thermal energy. Nernst thought of a zerorem demonstrates that a system of perturbed harmonic oscil-
point energy which is physically singled out by peculiar lators behaves in an ordered way in a region of positive
characteristics, but free to pass into degratteérma) en-  measure of the phase spdd®&]. One has therefore to expect

ergy. He asserted that this contribution of the zero-point enthat, by lowering the temperature of a generic condensed
matter system, its behavior will be driven through a dynami-

cal chaos-to-order transition.
A second question about the genericity of the behavior

This work was reviewed by Cercignani, Galgani, and - ; ;
o o ; ; described above is related to the size of the system. Of
Scotti in 197219], and by Galgani in 198{20}, introducing course, no computer experiment can definitely answer the

the concept of a stochastic threshold. Their treatment of th estion of what would one find in the thermodynamic limit
energy exchange§ in-a ;ystem was in the framg (.)f CIaSS'C%Phas been found very recently that in a Fermi-Pasta-Ulam
statistical mechanics, without using concepts similar to th?FPU) « model there is, at low temperature, an energy

zero-point energy. The available energy fisd_?flways thdermalthreshold which separates ordered and chaotic dynamics, and
but they distinguished betweeen states of different ofder that this treshold goes to zero in the thermodynamical limit

disordey. [23]. As the Hamiltonian of the FPWd model is very similar

Following only classical considerations, they found an €Ny that of our system at low energy, this implies that the

ergy ordering in the system due to the persistence of KAMrange below 0.1 K, in which we assume the dynamics of our

tori in the region of lower energy. On the_ other hanql, thismodel to be determined by the presence of KAM tori, would
ordered energy cannot be identified straightaway with thefurther shrink forN—co; in this limit, therefore, the behavior

guantum zero-point energy, using the concept developed b :
Nemst. Indeed. as shown by BoyEg1], if one wants to f the system in the whole temperature range below 10 K

. . o i N would show the slow time dependence that we attribute to
introduce rigorously a “real” zero-point energyla Nernst,

) L 4 ; Arnold diffusion. This can be expected because the energy
one has f[o_adm|t an infinite energy densityith peculiar corresponding to 10 K can be identified with tskeong sto-
chéll_rr?cterlsulc)sath:O. imulation of . diate b chasticity thresholdSST), a critical value of the energy per

e results of our simulation a, are intermediate be- poe \which has been shown to exist in nonintegrable sys-
tween the quz_intum_and_thad|t|onaIIy) classical ones. Ex- ¢ [24,25. Above the threshold the motion is strongly
tﬁndmg the S|fmulat|onht|me the);tend to the latter, but keer%:haotic, and all dynamical functions relax rapidly. Below the
the cr|]l_1antum eaturr1e that,—0 w enT—>h0. ¢ _I_threshold very long relaxation times appear, as in the case of
. This §uggests_t at our system reaches a stz_ﬂe or equi 'li’ﬁe specific heat computed in the paper at hand; this is due to
rium which is neither the state of quantum equilibrium, Nory, o \eak chaoticity, which yields an apparently ordered dy-
the classical Oné\.Nh'Ch Jegns called the norrln_allsﬁatﬁ namics for short and medium observation times. The SST
appears to be an intermediate metastable equilibrium stategsaems to be independent of the number of DOF’s in the

which Jeans called stationary. . . . system. Therefore, one should also find extremely long re-
We can thus say that the present simulation retrieves earl xation times at low temperature in large systeimsr lat-
intuitions of both Jeans gnd Nernst, but In a d|.fferent phySI'tice is not suited to study very large systems because, due to
cal context. The exceedingly Ion.g relaxat|on timecpfto- the interaction being limited to first neighbors, it is stabilized
ward the classical value emphasizes the existence of the Staﬁly by the rigid boundary, and therefore becomes unstable
tionary states predicted by Jeans. On the other hand, the IoI its core region whei be,comes very largeAs far as the

values we found forc, at low temperatures are related, specific heat is concerned, we expect a quantum-similar be-
through th.e scheme of a st'och'a'stlc threshold introduced i avior at short times, if one computes it using the method
the work cited above, to the intuition by Nernst of an ordereG o qyced in this paper. As a matter of fact, this is what was
dynamics. found in a realistic microcrystal; these results will be re-
ported in a forthcoming papég6.

In the retrieval of the early intuitions by Jeans and Nernst
proposed above a difference remains between the classical

An important question raised by the results of our com-revisited approach and the traditional quantum one. Never-
puter experiment is: how generic is this kind of behavior of atheless, it is interesting to observe a point of contact between
lattice at low temperature? In condensed matter systems, thike two mechanical frameworks. At low temperature, classi-
atoms typically interact through a potential characterized bycal physics, reviewed from the point of view of modern non-
a strongly repulsive core at short distances, and a soft attratinear mechanics, predicts a weak interaction among oscilla-
tive part at large distances; an example of this kind is theors because of the presence of ordered dynamics. On the
well known Lennard-Jones potential, widely used for sys-other hand, at low temperature quantum physics predicts a
tems that can be modeled by a pairwise additive interactionweak interaction among oscillators because of the difficulty
At high temperature the dynamics of the atoms will be de-of activating the energy quanta which must be exchanged. So
termined mainly by the repulsive core. At low temperaturethe effect which is responsible for the drop to zero of the
on the other hand, the atoms will oscillate around the bottonspecific heat when the temperature goes to zero, can be
of a potential well; they can therefore be described by ehandled in the two frameworks, yielding qualitatively similar
harmonic Hamiltonian perturbed by nonlinear terms. results.

therefore, the specific heat decreases.

VII. DISCUSSION
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