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Classical specific heat of an atomic lattice at low temperature, revisited

Andrea Perronace and Alexander Tenenbaum*
Physics Department, ‘‘La Sapienza’’ University, Piazzale Aldo Moro 2, 00185 Rome, Italy

~Received 6 June 1997!

We present results of a standard~constant energy! molecular dynamics simulation of a Lennard-Jones lattice
at low temperature. The kinetic energy fluctuations exhibit an anomalous behavior, due to a dynamics which is
only weakly chaotic. Such a dynamics does not allow the use of the usual microcanonical equilibrium formula
to compute the specific heat. We devise a different method for computing the specific heat, which exploits just
the weak chaos at low temperature. The result is that at low temperature this ‘‘revisited’’ specific heat is lower
than the classical value, and approaches zero when the temperature goes to zero. Only for exceedingly long
trajectories does the specific heat approach the classical value, with the exception of the very low temperature
range. These results prompt a reconsideration, in the frame of modern nonlinear dynamics, of early intuitions
by Nernst and Jeans.@S1063-651X~98!00101-9#

PACS number~s!: 05.20.Gg, 63.70.1h, 65.40.1g
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I. INTRODUCTION

The failure of classical statistical mechanics in predict
the drop to zero of the specific heat of an atomic latti
when the temperature goes to zero, is well known. It was
of the major issues, together with the blackbody radiati
which boosted the epochal change in physics from the c
sical to the quantum paradigm. At that time, several attem
were made by renowned physicists to reconcile the well
signed classical scheme with the new experimental data@1#;
those attempts were eventually given up. In more rec
years the problem of the energy distribution in a radiant c
ity was resumed by Benettin and Galgani by means o
computer experiment@2#. Their results showed that moder
developments in classical nonlinear dynamics establis
bridge between the classical and the quantum description
this paper, we show that a similar framework can substa
ate, at least qualitatively, some of the attempts mentio
above, providing a hint on how to narrow the gap betwe
the predictions of classical and quantum statistical mecha
for the low temperature specific heat.

In computer experiments performed by molecular dyna
ics ~MD!, ensemble averages are replaced by time avera
A practical problem which arises is how long the trajecto
must be in order to ensure an equivalence between the
kinds of average. Experience has shown that—despite
fact that practically no realistic condensed matter system
ever been demonstrated to be ergodic—in many cases a
jectory of some thousands of time steps is sufficient to
plore the phase space with a good accuracy. There are,
ever, systems for which this equivalence is not reached e
for very long simulation times, which greatly exceed t
usual length of a computer experiment. Even if one gives
the requirement of ergodicity and contents oneself with
view that ‘‘ . . . the time averages of phase function . . . ap-
pear as a natural interpretation of experimental meas
ments’’ @3#, one is left with the problem of the reliability o
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the results computed through time averages. As a matte
fact, in most cases their duration is orders of magnitu
shorter than that of a real experiment performed at equi
rium.

A relevant example of this kind of system is given b
atomic lattices at low temperature, which do not exhi
equipartition of energy among normal modes up to very lo
times @4#. In these systems anomalous fluctuations of
kinetic energy indicate that the relaxation toward equilibriu
is hindered. More specifically, it has been found, in
Lennard-Jones fcc lattice at a temperature of few degree
that the variance of the kinetic energy relaxes to the class
expected value over times which are at least three order
magnitude larger than the time needed by the kinetic ene
itself @5#. This may be related to the fact that the total kine
energy is a summable function, while its fluctuation is n
Only for summable functions is ergodicity granted if the su
face of constant energy is metrically indecomposable in
extended sense, which is assumed to be a generic prope
the mechanical systems treated in statistical mechanics@6#.

The example just cited shows that quantities depending
one and the same set of microscopic variables~in that case,
the particles’ momenta! may relax to their asymptotic valu
over largely different times. This implies that the syste
may appear to be at equilibrium or out of equilibrium, d
pending on which quantity is observed in a computer exp
ment of standard length. In Ref.@5# it was shown that, be-
cause of the exceedingly long time needed by the varianc
the kinetic energy to reach its equilibrium value, the comp
tation of the specific heat at constant volume, when p
formed through a formula suitable for the microcanonic
ensemble, yields absurd results. In this paper we prese
way to circumvent this difficulty. Our method to compute th
specific heat is based exactly on the phenomenon which
ders the use of the equilibrium microcanonical formula: t
weak interaction among normal modes of the lattice at l
temperature.

II. MODEL

We have simulated the dynamics of a two-dimensio
system composed ofL2 particles of massM (L58), ar-
ic
100 © 1998 The American Physical Society
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57 101CLASSICAL SPECIFIC HEAT OF AN ATOMIC . . .
ranged on a square lattice with square cells of sidea, sur-
rounded by a border of fixed particles. Each particle intera
with the four first neighbors through a Lennard-Jones pot
tial

V~r !54«F S s

r D 12

2S s

r D 6G ;
V(r ) has its minimum atr 0521/6s.

In the following, in order to make an approximate com
parison with reality, the Lennard-Jones parameters will
given the values appropriate for argon:s53.405 Å, e
5119.8kB (kB is Boltzmann’s constant!; the corresponding
reduced time unit ist5(ms2/48«)1/253.112310213 s. Our
model is obviously not similar to real argon, which crysta
lizes in a fcc structure. On the other hand, it has the adv
tage that its dynamical behavior has already been studie
detail @4,7#. It exhibits a breakdown of ergodicity at low
temperature; as a consequence of this breakdown, en
equipartition among normal modes does not hold at low te
perature. This fact makes this system a good candidat
study the possible influence of a weakly chaotic dynamics
a thermodynamical quantity like the specific heat, which
pends on the energy exchange among degrees of freedo

The system has been simulated at various temperat
below 17 K. The equations of motion have been integra
with a central difference algorithm, frequently used in M
experiments@8#. We have improved the precision of the sta
dard algorithm for the velocities by one order in the tim
step; a description of this modified algorithm was given
Ref. @9#.

We have used a time steph50.032t510214 s; each run
had a first equilibration stage of 103 steps, followed by a
stage of up to 107 steps, during which equilibrium average
were computed. We have explored the energy range be
e50.14, wheree is the energy per particle. For argon, th
would correspond to temperatures in the range below 17
which includes the transition region determined in Re
@4,7# for our 64-particle system. The total energy was i
tially distributed at random among all particles; therefore
was distributed at random among all normal modes. Th
initial conditions are surely the most generic at high tempe
ture, where the whole system is chaotic. At low temperatu
where the dynamics exhibits ordered features, the initial c
ditions could influence the final result. We have checked t
letting the system relax from the initial condition during a
equilibration time of 104 time steps~instead of the usual 103

time steps!, the results were not altered in any significa
way.

III. MICROCANONICAL SPECIFIC HEAT

The boundary conditions imposed on the simulated s
tem act as a conservative force field; it turns out that the t
energy is almost constant within a relative variation of 1025.
Therefore, if the system were ergodic, its trajectory in
phase space would sample a microcanonical ensemble
this ensemble the specific heat per degree of freedom~DOF!
at constant volume is related to the average fluctuation of
kinetic energy through the formula
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cv5
kB /2

12
Nd

2

^K2&mc2^K&mc
2

^K&mc
2

, ~1!

whereN is the number of particles,d the dimensionality of
the system, andK its total kinetic energy;̂ &mc is a micro-
canonical ensemble average@10#. As usual in MD experi-
ments, one defines a temperatureT through the time average
of the kinetic energy:

^K&5NdkBT/2, ~2!

where^ & is the time average. There is another formula
the specific heat, which coincides with formula~1! in the
thermodynamic limit, but should be more precise for finiteN
@11#:

cv5
kB

d
@ 2

3 ^K&mĉ K21&mc1N~12^K&mĉ K21&mc!#
21.

~3!

We used formulas~1! and~3! to compute the specific hea
per DOF of our system at various temperatures, replac
ensemble averages by time averages. This computa
turned out to be a check of the equivalence of time a
ensemble averages, and showed that this equivalence
not hold for computer experiments performed at low te
perature~with phase space trajectories of standard length!.

In order to illustrate this fact, in Fig. 1 we show the res
of a simulation performed atT50.106 K. The value given
by ~1! for cv at the beginning of the run is about
20.14kB , while the classical value ofkB is reached only
after a very long average: about 107 time steps~correspond-
ing to 0.1ms) are needed to reach the expected plat
within an approximation of 1%~curvea). Between these two
limits there is a peculiar divergence, due to the denomina
of formula ~1! going to zero. This in its turn, as alread
explained in Ref.@5#, is related to an anomalous fluctuatio
of the kinetic energŷ (dK)2&5^K2&2^K&2. Formula ~1!
shows that the specific heat diverges around a timet* at
which the average fluctuation of the kinetic energy equ
2^K&2/Nd. Such a fluctuation would be expected in a c
nonical ensemble, while the value expected in a micro
nonical ensemble iŝ K&2/Nd @10#. The very long time
needed bycv to reach the valuekB is evidence of the exceed
ingly slow relaxation of the variance of the kinetic energ
mentioned above. A similar pattern is found when one u
formula ~3!. In this case, the time needed to reach t
asymptotic value ofcv is even longer~curveb).

In Fig. 2, we report the variation oft* with temperature.
Above 0.1 K,t* decreases exponentially withT, so that for
temperatures above 1 K one can expect that the standa
simulation time—of the order of some thousands of tim
steps—is sufficient to find the expected classical value
cv . On the other hand, when the temperature decreases
low 0.1 K, t* increases very sharply; as a consequence
very low temperature, time averages of the kinetic ene
fluctuations—even over very long times—are not equival
to ensemble averages. The temperature in the compute
periment is defined in the usual way, through formula~2!.
This identification deserves some specification. One m
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FIG. 1. Specific heat per DOF compute
through formula~1!, curve a, and formula~3!,
curve b. The curves diverge, respectively, atta*
.23105 and tb* .6.33105 time steps. T
50.106 K.
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question the meaning of a~low! thermodynamic temperature
given the apparent lack of ergodicity. On the other hand
our computer experiments equipartition between the tota
netic and the total potential energy holds quite strictly, h
ing taken into account the small anharmonicity left at lo
energy; therefore, the temperature may be defined as u
through the particles’ kinetic energy, which shows no ‘‘p
thology’’ in this range.

IV. CANONICAL SPECIFIC HEAT

In order to have a physically significant measure of
specific heat at low temperature, one can try to circumv
the difficulty connected with formula~1! by switching to a
canonical ensemble. This could be achevied using a N´-
Hoover thermostat to sample a canonical ensemble. Bu
anomalous fluctuation of the kinetic energy has recently b
found in computer experiments using Nose´-Hoover dynam-
ics @12#. It turned out that the dynamics of the extend
system~particles plus heat-flow variable! was partially or-

FIG. 2. Divergence timet* of the microcanonical specific hea
computed through formula~1!, in the low temperature range. Th
curve shows the different behavior oft* in the temperature range
below and above 0.1 K.
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dered; this ‘‘smooth’’ integrability was sufficient to hampe
the chaotic behavior of the system, and produce unwan
long-lasting undulations of the kinetic energy. Moreover, t
Nosé-Hoover method requires a modification of the equ
tions of motion in the bulk of the system. It can be expec
that this would alter substantially the behavior of the syst
in the low temperature region of the phase space, where
dynamics is known to be partially ordered.

In order to obtain a physically significant measure of t
specific heat at low temperature, we used a method ba
just on the ‘‘pathological’’ dynamics which hinders the u
of formula ~1!. This anomalous behavior can be better re
resented if one adopts a set ofappropriate coordinates to
describe the dynamics of the system. For a lattice, this se
the normal modes@4#, while the particle Cartesian coord
nates do not exhibit any appreciable anomaly in their dyna
ics @13#. It has been shown that in the lattice here describ
equipartition of energy among normal modes does not h
at low temperature@4#. This lack of ‘‘attrition’’ among
modes, characteristic of a weakly chaotic dynamical regim
is responsible for the slow relaxation of the kinetic ener
fluctuation, and determines the short- and medium-time m
roscopic behavior of the system.

We will show below that the normal modes of our syste
can be divided into groups of equal frequency; within ea
group the energy exchange among modes is significant
rapid, while the exchange among different groups is usu
weak and slow. Exploiting this feature, each group of norm
modes can be seen as a small subsystem in weak intera
with a ‘‘thermal bath’’ made of all other groups of mode
The interaction takes place through the anharmonic par
the Hamiltonian. While it is evident that the probability di
tribution of the energy of the whole system, or of a lar
portion of it, is bound by the condition that the total ener
be constant, for small components of the system the ene
distribution law is ‘‘almost identical’’ in the microcanonica
and in the canonical ensemble@14#.

In a canonical ensemble the probability of a state of
ergy Ea is

P~Ea!5
e2bEa

(
a

e2bEa

, ~4!
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57 103CLASSICAL SPECIFIC HEAT OF AN ATOMIC . . .
where the sum extends over all possible states andb
5(kBT)21. If the system can be decomposed inM small
subsystems with negligible interaction, one hasEa

.( j 51
M Ej , whereEj is the energy of subsystemj ~obviously

Ej<Ea). One has

e2bEa5)
j 51

M

e2bEj .

On the other hand, one also has

(
a

e2bEa5(
a

e2b( j 51
M Ej5 )

j 51

M

(
a

e2bEj ;

therefore,

P~Ea!5)
j 51

M
e2bEj

(
a

e2bEj

[)
j 51

M

P~Ej uEa!,

where P(Ej uEa) is the conditional probability that thej th
subsystem has energyEj when the whole system has ener
Ea . If the j th subsystem is small in comparison with th
whole system, then the value of total energy is not an eff
tive constraint for the energy of the subsystem; one there
has P(Ej uEa).P(Ej ), using definition~4!, with Ej taking
any value. This means that the canonical probability at te
peratureT of a state of the system is the product of t
independent probabilities of theM subsystems at the sam
temperature. It is as if each subsystem were individually
contact with the thermal bath which determines the temp
ture of the system.

Adopting this canonical point of view, we have comput
the contribution of each group of modes to the heat capa
of the system through a formula suitable for a canonical
semble. The anharmonicity of the system has been taken
account by considering the nonlinear terms in the Ham
tonian as a part of the thermal bath; this contribution to
energy of the system becomes negligible at low temperat

Let ulm
x andulm

y be the displacements of a particle from
equilibrium position at site (l ,m) ( l ,m51,8). The normal-
mode coordinates are defined by

qhk
x 5

2

L11 (
l ,m51

L

ulm
x sinS hp l

L11D sinS kpm

L11D ,

qhk
y 5

2

L11 (
l ,m51

L

ulm
y sinS hp l

L11D sinS kpm

L11D ,

whereh,k51,L. In these coordinates the Hamiltonian of th
system is

H5
M

2 (
h,k51

L

@~ q̇hk
x !21~vhk

x qhk
x !21~ q̇hk

y !21~vhk
y qhk

y !2#

1H8,

whereH8 is the anharmonic part of the Hamiltonian, whic
entails the coupling among normal modes and is negligibl
c-
re

-

n
a-

ty
-
to

l-
e
e.

at

sufficiently low energies;vhk
x and vhk

y are the angular fre-
quencies of the normal modes:

~vhk
x !25~vkh

y !25
4

M FKlsin2
ph

2~L11!
1Ktsin2

pk

2~L11!G ,
Kl[

]2V

]r 2U
d

, Kt[
1

r

]V

]r U
d

.

We have considered the case in which the lattice par
etera5r 0, which gives zero pressure at zero temperature
this caseKt50. There are onlyL distinct frequencies (vhk

x

5vkh
y [vh) ranging from 0.3789 to 2.1491 in Lennard

Jones reduced units~rad/t!. The normal modes are naturall
separated intoL groups, each group including 2L modes of
equal frequency. The total energy of the system may now
found summing the energiesEh of the different groups of
modes, plus the energy of the coupling due to theH8 term;
one has

Eh5
M

2 (
k51

L

@~ q̇hk
x !21~vh

xqhk
x !21~ q̇kh

y !21~vh
yqkh

y !2#.

In this case, the eight group energiesEh will be the rel-
evant DOF’s. In fact, as described in Ref.@4#, modes of
equal frequency rapidly exchange their energy, always p
viding a good energy equipartition inside their group. On t
other hand, the exchange of energy among groups of mo
of different frequency is strongly affected by the breakdo
of ergodicity at low temperature. Therefore, the energies
the groups become the relevant DOF’s in monitoring
dynamics of the system.

For a system at constant temperature the specific hea
DOF is given, in units ofkB :

cv5
1

Nd

^H2&c2^H&c
2

kB
2T2

, ~5!

whereH is the total energy andT the temperature. Here to
we replace ensemble averages by time averages. Consid
the i th group ofLd normal modes as an independent su
system of energyHi , its contribution to the specific heat pe
DOF will be, using formula~5!,

cv~ i !5
1

Ld

^Hi
2&2^Hi&

2

kB
2T2

, ~6!

and the specific heat for the total system will be

cv5

(
i

Ldcv~ i !

L2d
. ~7!

Adopting this point of view, one may wonder whether th
temperature used in formula~6! should refer to the whole
system or to the subsystem. In the latter case, agroup tem-
perature Ti could be computed—through formula~2!—from
the average kinetic energy of thei th group of normal modes
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104 57ANDREA PERRONACE AND ALEXANDER TENENBAUM
Consequently, in formula~6! T should be replaced byTi .
We will show later that the two choices yield almost equiv
lent results.

In order to make a comparison with quantum statisti
mechanics, we have computed also the quantum specific
of our lattice, in the frame given by the formula of Born an
von Karman:

U5E \vD~v!

e\v/kBT21
dv1E \v

2
D~v!dv,

whereU is the energy of the system andD(w) is the density
of states. For our finite lattice, this formula becomes

U52L (
h51

L
\vh

e\vh/kBT21
1e0 ,

which gives for the specific heat per DOF,

cv5kB(
h51

L S \vh

kBT D 2

e\vh /kBT

~e\vh /kBT21!2
. ~8!

V. RESULTS OF THE COMPUTER EXPERIMENT

We performed simulations in the temperature range be
the melting point, which is around 17 K. Due to the instab
ity of the lattice, the higher temperatures were approac
from below, first endowing the system with a low kinet
energy and then—after equilibrium was reached—scaling
the velocities; repeating this procedure several times, th
nal equilibrium temperature was reached, avoiding a mel
of the lattice. The results of our simulations are reported
Fig. 3. In the same figure we report the classical specific h
computed through formulas~6! and ~7!, and also the quan
tum specific heat computed through formula~8!.

Each point on the curve corresponding to 103 time steps is
the average of five different initial conditions; the error ba
show the spread of the five results. The points on the cu
corresponding to 107 time steps refer to a single initial con
dition. Using in formula~6! the group temperatures instea
of the system temperature, one obtains slightly different v
ues forcv , not shown in Fig. 3. For the two curves at shor
times the results forcv differ in some cases by a few percen
and only in one case—after 103 time steps—by 20%. For the
points obtained after 107 time steps, the new results almo
coincide with the others. As the use of these two differ
temperatures does not modify in any significant way the p
tern shown in Fig. 3, we have reported for clarity only t
data computed with the temperature of the system.

The main feature emerging from Fig. 3 is that at lo
temperature the specific heat does not have the con
value predicted by the classical law of Dulong-Petit. Inde
a computation ofcv performed over 103 time steps~after 103

time steps of equilibration! shows that the classical value fo
cv , that is,kB for degree of freedom, is found at a temper
ture around 16 K, while close to this pointcv shows the
typical increase expected in a lattice when the melting po
is approached from below. Below 15 K, the behavior ofcv
clearly diverges from the classical prediction, diminishi
-
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with a constant slope when 12 K.T.2 K, and dropping
rapidly to zero below 2 K. The values ofcv below 12 K are
closer to the quantum specific heat—computed through
mula ~8!—than to the classical Dulong-Petit law.

Extending the equilibrium simulation over 104 time steps,
the values ofcv increase, but the general pattern rema
similar. If, on one hand, the classical valuekB in now found
around 13 K, the fast drop ofcv for T→0 is still present,
notwithstanding the increase of the simulation time by o
order of magnitude.

We have further extended the simulation time up to 17

time steps. The curve ofcv is again shifted to higher values
but keeps the main new feature, that is, the drop to zer
low temperatures.

The evolution in time of the curves in Fig. 3 suggests
interpretation based on different dynamical regimes. In
range below 0.1 K the persistent low value ofcv could be
ascribed to an ordered dynamics due to the presenc
Kolmogorov-Arnold-Moser~KAM ! tori in the phase space
@15#. Between 1 and 10 K the very slow increase ofcv is
reminiscent of a dynamicsà la Nekhoroshev@16#, with a
slow Arnold diffusion in the phase space. Above this ran
the motion becomes chaotic over times which are not v
long (104 steps!, andcv has a value near to the classical o
kB . The various curves forcv do not show a plateau at thi
value. This is due to the strong anharmonicity of the latti
which is measured by the ratiôH8&/^H&. In the lower part
of Fig. 3 we report the value of the anharmonicity; the i
crease for temperatures above 10 K is indicative of the s
ness of the lattice, which melts above 16 K, as shown by
sharp rise to 15% of the anharmonicity.

An obvious question raised by these results is what wo
one find for even longer simulations. The time depende

FIG. 3. The upper part shows the specific heat per DOF
various averaging times, computed through formula~6!. d, 103

time steps;3, 104 time steps;(, 107 time steps. Also shown is the
quantum specific heat (n) computed through formula~8!. The hori-
zontal line represents the classical valuecv5kB . The lower part
shows the anharmonicity of the lattice, computed as^H8&/^H&, in
the same temperature range.
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57 105CLASSICAL SPECIFIC HEAT OF AN ATOMIC . . .
of the averaged value ofcv can be seen in Fig. 4, where th
results up to 107 time steps are given for four temperatur
below 3 K. The figure shows clearly that in this temperatu
range the asymptotic values ofcv are smaller than the clas
sical valuekB . A more detailed analysis of these features
given in Fig. 5, where we plot the function2 ln(12cv) for
the longest simulation (107 time steps!, in the temperature
range below 7 K. The function shown should diverge ifcv
approached from below the classical valuekB . Indeed, for
short times the curves exhibit a very steep rise. But as t
increases the slope of all curves diminishes progressiv
indicating that the valuekB would be reached only in som
cases, and over extremely long simulation times. The fig
shows that some temperatures give after 107 a stabilized
value ofcv , while some others do not. Looking more car
fully at the various curves, one can distinguish two tempe
ture ranges: below 0.12 K and above 0.12 K. In the fi
range the values reached bycv are stable after 107 steps; in

FIG. 4. Specific heat per DOF~in kB units! as a function of the
averaging time.c: T52.63 K; f : T55.2731021 K; i : T56.59
31022 K; m: T51.3431023 K.

FIG. 5. A function of the specific heat per DOF comput
through formula~6!, as a function of the averaging time.a: T
56.56 K; b: T53.94 K; c: T52.63 K; d: T51.32 K; e: T
51.05 K; f : T55.2731021 K; g: T51.3031021 K; h: T
51.2031021 K; i : T56.5931022 K; l : T51.4531022 K; m:
T51.3431023 K.
e
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the second range the behavior is mixed: some values ocv
are still slowly increasing, some are stable. Here again on
induced to assign the first range to a region mainly folia
by KAM tori, while the mixed behavior of the second rang
seems ascribable to a dynamicsà la Nekhoroshev. The gen
eral pattern which emerges from this figure is that at v
low temperature the values found forcv in our computer
experiment are almost asymptotic. For higher temperatur
change ofcv for some temperatures can be expected o
exceedingly long runs; however, this shift of values sho
not qualitatively alter the curve, which would remain signi
cantly below the classical value for temperatures below
K.

The results given above show that the low energy reg
of the phase space is characterized by a core where the
namics is ordered; here the freezing of the energy excha
among normal modes yields a value of the specific h
which is closer to the quantum value than to the class
one. This should not be surprising, as the quantum beha
at low temperature depends exactly on the fact that the
ergy exchange among DOF’s is heavily hampered. T
phase space region near the ordered core is characterize
a weak chaoticity, which manifests itself only over very lon
times, as predicted by the Nekhoroshev theorem. As a c
sequence, in the energy~temperature! range corresponding to
this region, the specific heat increases slowly towards
classical value. But this can be observed only if the simu
tion time is increased by orders of magnitude over the typ
duration of an equilibrium computer experiment.

VI. RETRIEVAL OF EARLY INTUITIONS

The idea of a freezing of the degrees of freedom was fi
proposed by Boltzmann in his work on the theory of gases
rigorous attempt do develop a formal scheme supporting
idea was made by Jeans in his mechanical model of et
Following Jeans, a system is in anormal stateif the energy
distribution turns out to be independent of the initial con
tions: this is clearly a property of ergodic systems.

The time needed to reach this state depends on the ra
energy exchanges, and Jeans improved in this context
original idea of Boltzmann. Jeans said that for some syste
the normal state is achieved after a long relaxation which
even be of the order of ‘‘hundred of centuries’’~as roughly
computed by him through heuristic considerations! @17#. On
the other hand, he admitted that the Planck distribution c
rectly describes those states of equilibrium~i.e., independent
of the initial conditions! which can be reached during th
time of a typical experiment. But, he argued, one can
exclude that during a typical experiment some degrees
freedom are still frozen, and that the distribution will eve
tually evolve over a very long time, of the order of magn
tude mentioned above.

Later, an equilibrium approach to this problem was
tempted by Nernst in 1916@18#. An important character of
Planck’s quantum zero-point energy is that it is not availab
it is only the ground state, that is, a new zero for the ene
which can be exchanged. The zero-point energy is nei
ordered, nor disordered: it is fixed. Instead, the central i
of Nernst is that the zero-point energy is always free in pr
ciple and can be exchanged by continuous amounts~this con-
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cept was the basis for a new model of ether!. It is not always
used by the system; for example, in some cases it is
exchanged during molecular collisions: it is ‘‘ordered
Nevertheless, whenever this zero-point energy is used,
transformed into thermal energy. Nernst thought of a ze
point energy which is physically singled out by peculi
characteristics, but free to pass into degraded~thermal! en-
ergy. He asserted that this contribution of the zero-point
ergy to the thermal energy reduces the energy excha
therefore, the specific heat decreases.

This work was reviewed by Cercignani, Galgani, a
Scotti in 1972@19#, and by Galgani in 1981@20#, introducing
the concept of a stochastic threshold. Their treatment of
energy exchanges in a system was in the frame of clas
statistical mechanics, without using concepts similar to
zero-point energy. The available energy is always therm
but they distinguished betweeen states of different order~or
disorder!.

Following only classical considerations, they found an e
ergy ordering in the system due to the persistence of KA
tori in the region of lower energy. On the other hand, t
ordered energy cannot be identified straightaway with
quantum zero-point energy, using the concept developed
Nernst. Indeed, as shown by Boyer@21#, if one wants to
introduce rigorously a ‘‘real’’ zero-point energyà la Nernst,
one has to admit an infinite energy density~with peculiar
characteristics! at T50.

The results of our simulation ofcv are intermediate be
tween the quantum and the~traditionally! classical ones. Ex-
tending the simulation time they tend to the latter, but ke
the quantum feature thatcv→0 whenT→0.

This suggests that our system reaches a state of equ
rium which is neither the state of quantum equilibrium, n
the classical one~which Jeans called the normal state!: it
appears to be an intermediate metastable equilibrium sta
which Jeans called stationary.

We can thus say that the present simulation retrieves e
intuitions of both Jeans and Nernst, but in a different phy
cal context. The exceedingly long relaxation time ofcv to-
ward the classical value emphasizes the existence of the
tionary states predicted by Jeans. On the other hand, the
values we found forcv at low temperatures are relate
through the scheme of a stochastic threshold introduce
the work cited above, to the intuition by Nernst of an order
dynamics.

VII. DISCUSSION

An important question raised by the results of our co
puter experiment is: how generic is this kind of behavior o
lattice at low temperature? In condensed matter systems
atoms typically interact through a potential characterized
a strongly repulsive core at short distances, and a soft at
tive part at large distances; an example of this kind is
well known Lennard-Jones potential, widely used for s
tems that can be modeled by a pairwise additive interact
At high temperature the dynamics of the atoms will be d
termined mainly by the repulsive core. At low temperatu
on the other hand, the atoms will oscillate around the bott
of a potential well; they can therefore be described by
harmonic Hamiltonian perturbed by nonlinear terms.
ot
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In the first case the dynamics will be similar to that of
system of hard spheres, in the second case to that of a sy
of perturbed harmonic oscillators. Now, the system of h
spheres is assumed to be ergodic@22#, while the KAM theo-
rem demonstrates that a system of perturbed harmonic o
lators behaves in an ordered way in a region of posit
measure of the phase space@15#. One has therefore to expec
that, by lowering the temperature of a generic conden
matter system, its behavior will be driven through a dynam
cal chaos-to-order transition.

A second question about the genericity of the behav
described above is related to the size of the system.
course, no computer experiment can definitely answer
question of what would one find in the thermodynamic lim
It has been found very recently that in a Fermi-Pasta-Ul
~FPU! a model there is, at low temperature, an ener
threshold which separates ordered and chaotic dynamics
that this treshold goes to zero in the thermodynamical li
@23#. As the Hamiltonian of the FPUa model is very similar
to that of our system at low energy, this implies that t
range below 0.1 K, in which we assume the dynamics of
model to be determined by the presence of KAM tori, wou
further shrink forN→`; in this limit, therefore, the behavio
of the system in the whole temperature range below 10
would show the slow time dependence that we attribute
Arnold diffusion. This can be expected because the ene
corresponding to 10 K can be identified with thestrong sto-
chasticity threshold~SST!, a critical value of the energy pe
DOF which has been shown to exist in nonintegrable s
tems @24,25#. Above the threshold the motion is strong
chaotic, and all dynamical functions relax rapidly. Below t
threshold very long relaxation times appear, as in the cas
the specific heat computed in the paper at hand; this is du
the weak chaoticity, which yields an apparently ordered
namics for short and medium observation times. The S
seems to be independent of the number of DOF’s in
system. Therefore, one should also find extremely long
laxation times at low temperature in large systems~our lat-
tice is not suited to study very large systems because, du
the interaction being limited to first neighbors, it is stabiliz
only by the rigid boundary, and therefore becomes unsta
in its core region whenN becomes very large!. As far as the
specific heat is concerned, we expect a quantum-similar
havior at short times, if one computes it using the meth
introduced in this paper. As a matter of fact, this is what w
found in a realistic microcrystal; these results will be r
ported in a forthcoming paper@26#.

In the retrieval of the early intuitions by Jeans and Ner
proposed above a difference remains between the clas
revisited approach and the traditional quantum one. Nev
theless, it is interesting to observe a point of contact betw
the two mechanical frameworks. At low temperature, clas
cal physics, reviewed from the point of view of modern no
linear mechanics, predicts a weak interaction among osc
tors because of the presence of ordered dynamics. On
other hand, at low temperature quantum physics predic
weak interaction among oscillators because of the difficu
of activating the energy quanta which must be exchanged
the effect which is responsible for the drop to zero of t
specific heat when the temperature goes to zero, can
handled in the two frameworks, yielding qualitatively simil
results.
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